If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-x^-2+81x^2=0
We add all the numbers together, and all the variables
81x^2-1x-2=0
a = 81; b = -1; c = -2;
Δ = b2-4ac
Δ = -12-4·81·(-2)
Δ = 649
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{649}}{2*81}=\frac{1-\sqrt{649}}{162} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{649}}{2*81}=\frac{1+\sqrt{649}}{162} $
| y+1.9=6.89 | | z/6+72=79 | | 12–3r=9 | | -3(4b-2)=6-12b | | 1/5=1/3+f | | 14-r=-6 | | 11=2y-17 | | t/2+15=19 | | w/5+8=35 | | -1.2(3-x)=-8 | | 3w=30-2w | | 5/7+a=-2/7 | | c/2+12=14 | | 7x+56=15x | | 6x-8+x=4x+16 | | 8z-9=9z-5 | | 1=9-2f | | -2x^2-9=-107 | | (x+10)=2x-4 | | 8(x–4)=32 | | -3(7p+3)-2(4-14p)=3(5+2p) | | 1/7x-4=-6/7x+4 | | 6x-1÷5=16 | | 2/(x+10)=2x-4 | | A-1=4(a-100) | | (8-5i)/(-7-2i)=0 | | -8(n-6)=2-7n | | -17=y-9 | | p-2=6 | | Y-(2y-5/10-3y)=1/6(2y-57)-5/3 | | 45+3x=114 | | 8y=2=24 |